博客
关于我
算法实践1_线性回归
阅读量:434 次
发布时间:2019-03-06

本文共 698 字,大约阅读时间需要 2 分钟。

参数解释

sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=None)
超参 解释 类型(默认值)
fit_intercept 是否计算模型的截距;如果设置为 False,计算将不使用截距(即:期望数据已经进行了中心化处理) boolean(True)
normalize 是否将数据归一化;fit_intercept 设置为 False 时,这个参数可以忽略。如果设置为 True,回归之前将通过减去均值并除l2范数进行归一化。如果需要进行标准化,请在调用估计器 normalize=False的 fit 函数之前使用 boolean(False)
n_jobs 确定cpu的核数 (None表示1,-1 表示使用所有) int or None(None)
属性 解释 类型
coef_ 回归系数(斜率) array
intercept_ 截距 array
方法 解释 类型
fit(X, y[, sample_weight]) 训练模型 X : array-like or 稀疏矩阵,y : array_like,sample_weight : numpy array
predict(X) 预测 X : array_like or 稀疏矩阵
score(X, y[, sample_weight]) R 2 = 1 − ( ∑ i = 1 m ( y ( i ) − y ^ ( i ) ) 2 ) / m ( ∑ i = 1 m ( y ( i )

转载地址:http://llwyz.baihongyu.com/

你可能感兴趣的文章
mongodb定时备份数据库
查看>>
mppt算法详解-ChatGPT4o作答
查看>>
mpvue的使用(一)必要的开发环境
查看>>
MQ 重复消费如何解决?
查看>>
mqtt broker服务端
查看>>
MQTT 保留消息
查看>>
MQTT 持久会话与 Clean Session 详解
查看>>
MQTT工作笔记0007---剩余长度
查看>>
MQTT工作笔记0009---订阅主题和订阅确认
查看>>
Mqtt搭建代理服务器进行通信-浅析
查看>>
MS Edge浏览器“STATUS_INVALID_IMAGE_HASH“兼容性问题
查看>>
ms sql server 2008 sp2更新异常
查看>>
MS UC 2013-0-Prepare Tool
查看>>
MSBuild 教程(2)
查看>>
msbuild发布web应用程序
查看>>
MSB与LSB
查看>>
MSCRM调用外部JS文件
查看>>
MSCRM调用外部JS文件
查看>>
MSEdgeDriver (Chromium) 不适用于版本 >= 79.0.313 (Canary)
查看>>
MsEdgeTTS开源项目使用教程
查看>>