博客
关于我
算法实践1_线性回归
阅读量:434 次
发布时间:2019-03-06

本文共 698 字,大约阅读时间需要 2 分钟。

参数解释

sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=None)
超参 解释 类型(默认值)
fit_intercept 是否计算模型的截距;如果设置为 False,计算将不使用截距(即:期望数据已经进行了中心化处理) boolean(True)
normalize 是否将数据归一化;fit_intercept 设置为 False 时,这个参数可以忽略。如果设置为 True,回归之前将通过减去均值并除l2范数进行归一化。如果需要进行标准化,请在调用估计器 normalize=False的 fit 函数之前使用 boolean(False)
n_jobs 确定cpu的核数 (None表示1,-1 表示使用所有) int or None(None)
属性 解释 类型
coef_ 回归系数(斜率) array
intercept_ 截距 array
方法 解释 类型
fit(X, y[, sample_weight]) 训练模型 X : array-like or 稀疏矩阵,y : array_like,sample_weight : numpy array
predict(X) 预测 X : array_like or 稀疏矩阵
score(X, y[, sample_weight]) R 2 = 1 − ( ∑ i = 1 m ( y ( i ) − y ^ ( i ) ) 2 ) / m ( ∑ i = 1 m ( y ( i )

转载地址:http://llwyz.baihongyu.com/

你可能感兴趣的文章
no1
查看>>
NO32 网络层次及OSI7层模型--TCP三次握手四次断开--子网划分
查看>>
NOAA(美国海洋和大气管理局)气象数据获取与POI点数据获取
查看>>
NoClassDefFoundError: org/springframework/boot/context/properties/ConfigurationBeanFactoryMetadata
查看>>
node exporter完整版
查看>>
Node JS: < 一> 初识Node JS
查看>>
Node JS: < 二> Node JS例子解析
查看>>
Node Sass does not yet support your current environment: Windows 64-bit with Unsupported runtime(72)
查看>>
Node 裁切图片的方法
查看>>
Node+Express连接mysql实现增删改查
查看>>
node, nvm, npm,pnpm,以前简单的前端环境为什么越来越复杂
查看>>
Node-RED中Button按钮组件和TextInput文字输入组件的使用
查看>>
vue3+Ts 项目打包时报错 ‘reactive‘is declared but its value is never read.及解决方法
查看>>
Node-RED中Switch开关和Dropdown选择组件的使用
查看>>
Node-RED中使用html节点爬取HTML网页资料之爬取Node-RED的最新版本
查看>>
Node-RED中使用JSON数据建立web网站
查看>>
Node-RED中使用json节点解析JSON数据
查看>>
Node-RED中使用node-random节点来实现随机数在折线图中显示
查看>>
Node-RED中使用node-red-browser-utils节点实现选择Windows操作系统中的文件并实现图片预览
查看>>
Node-RED中使用node-red-contrib-image-output节点实现图片预览
查看>>