博客
关于我
算法实践1_线性回归
阅读量:434 次
发布时间:2019-03-06

本文共 698 字,大约阅读时间需要 2 分钟。

参数解释

sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=None)
超参 解释 类型(默认值)
fit_intercept 是否计算模型的截距;如果设置为 False,计算将不使用截距(即:期望数据已经进行了中心化处理) boolean(True)
normalize 是否将数据归一化;fit_intercept 设置为 False 时,这个参数可以忽略。如果设置为 True,回归之前将通过减去均值并除l2范数进行归一化。如果需要进行标准化,请在调用估计器 normalize=False的 fit 函数之前使用 boolean(False)
n_jobs 确定cpu的核数 (None表示1,-1 表示使用所有) int or None(None)
属性 解释 类型
coef_ 回归系数(斜率) array
intercept_ 截距 array
方法 解释 类型
fit(X, y[, sample_weight]) 训练模型 X : array-like or 稀疏矩阵,y : array_like,sample_weight : numpy array
predict(X) 预测 X : array_like or 稀疏矩阵
score(X, y[, sample_weight]) R 2 = 1 − ( ∑ i = 1 m ( y ( i ) − y ^ ( i ) ) 2 ) / m ( ∑ i = 1 m ( y ( i )

转载地址:http://llwyz.baihongyu.com/

你可能感兴趣的文章
Node.js中环境变量process.env详解
查看>>
Node.js中的EventEmitter模块:基本概念、使用方法和常见应用场景
查看>>
Node.js之async_hooks
查看>>
Node.js也分裂了-开源社区动态
查看>>
Node.js创建第一个应用
查看>>
Node.js初体验
查看>>
Node.js升级工具n
查看>>
Node.js卸载超详细步骤(附图文讲解)
查看>>
Node.js卸载超详细步骤(附图文讲解)
查看>>
Node.js基于Express框架搭建一个简单的注册登录Web功能
查看>>
node.js学习之npm 入门 —8.《怎样创建,发布,升级你的npm,node模块》
查看>>
Node.js安装与配置指南:轻松启航您的JavaScript服务器之旅
查看>>
Node.js安装及环境配置之Windows篇
查看>>
Node.js安装和入门 - 2行代码让你能够启动一个Server
查看>>
node.js安装方法
查看>>
Node.js官网无法正常访问时安装NodeJS的方法
查看>>
node.js模块、包
查看>>
node.js模拟qq漂流瓶
查看>>
node.js的express框架用法(一)
查看>>
Node.js的交互式解释器(REPL)
查看>>