博客
关于我
算法实践1_线性回归
阅读量:434 次
发布时间:2019-03-06

本文共 698 字,大约阅读时间需要 2 分钟。

参数解释

sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=None)
超参 解释 类型(默认值)
fit_intercept 是否计算模型的截距;如果设置为 False,计算将不使用截距(即:期望数据已经进行了中心化处理) boolean(True)
normalize 是否将数据归一化;fit_intercept 设置为 False 时,这个参数可以忽略。如果设置为 True,回归之前将通过减去均值并除l2范数进行归一化。如果需要进行标准化,请在调用估计器 normalize=False的 fit 函数之前使用 boolean(False)
n_jobs 确定cpu的核数 (None表示1,-1 表示使用所有) int or None(None)
属性 解释 类型
coef_ 回归系数(斜率) array
intercept_ 截距 array
方法 解释 类型
fit(X, y[, sample_weight]) 训练模型 X : array-like or 稀疏矩阵,y : array_like,sample_weight : numpy array
predict(X) 预测 X : array_like or 稀疏矩阵
score(X, y[, sample_weight]) R 2 = 1 − ( ∑ i = 1 m ( y ( i ) − y ^ ( i ) ) 2 ) / m ( ∑ i = 1 m ( y ( i )

转载地址:http://llwyz.baihongyu.com/

你可能感兴趣的文章
MySQL 面试,必须掌握的 8 大核心点
查看>>
MySQL 高可用性之keepalived+mysql双主
查看>>
mysql 默认事务隔离级别下锁分析
查看>>
Mysql--逻辑架构
查看>>
MySql-2019-4-21-复习
查看>>
mysql-5.7.18安装
查看>>
MySQL-Buffer的应用
查看>>
mysql-cluster 安装篇(1)---简介
查看>>
mysql-connector-java各种版本下载地址
查看>>
mysql-EXPLAIN
查看>>
mysql-group_concat
查看>>
MySQL-redo日志
查看>>
MySQL-【1】配置
查看>>
MySQL-【4】基本操作
查看>>
Mysql-丢失更新
查看>>
Mysql-事务阻塞
查看>>
Mysql-存储引擎
查看>>
mysql-开启慢查询&所有操作记录日志
查看>>
MySQL-数据目录
查看>>
MySQL-数据页的结构
查看>>