博客
关于我
算法实践1_线性回归
阅读量:434 次
发布时间:2019-03-06

本文共 698 字,大约阅读时间需要 2 分钟。

参数解释

sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=None)
超参 解释 类型(默认值)
fit_intercept 是否计算模型的截距;如果设置为 False,计算将不使用截距(即:期望数据已经进行了中心化处理) boolean(True)
normalize 是否将数据归一化;fit_intercept 设置为 False 时,这个参数可以忽略。如果设置为 True,回归之前将通过减去均值并除l2范数进行归一化。如果需要进行标准化,请在调用估计器 normalize=False的 fit 函数之前使用 boolean(False)
n_jobs 确定cpu的核数 (None表示1,-1 表示使用所有) int or None(None)
属性 解释 类型
coef_ 回归系数(斜率) array
intercept_ 截距 array
方法 解释 类型
fit(X, y[, sample_weight]) 训练模型 X : array-like or 稀疏矩阵,y : array_like,sample_weight : numpy array
predict(X) 预测 X : array_like or 稀疏矩阵
score(X, y[, sample_weight]) R 2 = 1 − ( ∑ i = 1 m ( y ( i ) − y ^ ( i ) ) 2 ) / m ( ∑ i = 1 m ( y ( i )

转载地址:http://llwyz.baihongyu.com/

你可能感兴趣的文章
Netpas:不一样的SD-WAN+ 保障网络通讯品质
查看>>
netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
查看>>
Netty核心模块组件
查看>>
Netty源码—4.客户端接入流程一
查看>>
Netty源码—5.Pipeline和Handler一
查看>>
Netty源码—6.ByteBuf原理二
查看>>
Netty源码—7.ByteBuf原理四
查看>>
Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
查看>>
Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
查看>>
Network Sniffer and Connection Analyzer
查看>>
Nginx Location配置总结
查看>>
Nginx 反向代理解决跨域问题
查看>>
nginx 后端获取真实ip
查看>>
Nginx 学习总结(17)—— 8 个免费开源 Nginx 管理系统,轻松管理 Nginx 站点配置
查看>>
Nginx 我们必须知道的那些事
查看>>
oauth2-shiro 添加 redis 实现版本
查看>>
OAuth2.0_授权服务配置_Spring Security OAuth2.0认证授权---springcloud工作笔记140
查看>>
Objective-C实现A-Star算法(附完整源码)
查看>>
Objective-C实现atoi函数功能(附完整源码)
查看>>
Objective-C实现base64加密和base64解密算法(附完整源码)
查看>>